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INVESTIGATIONS ON THE INCOMPLETELY DEVELOPED PLANE DIAGONAL-
TENSION FIELD

BY PAWL KUHN

SUMMARY

Actwal diugonal-tension beams work in an inter-
mediate stuge between pure shear and pure diugonal
tension; the theory developed by Wagner for diagonal
tension i-s therefore not directly applicable. This paper
presents the results of investigation-s on the incompletely
developed dtigonal-tension$eld.

The first part of the paper brieji?y reviews the most
essential items of the theory of pure dtigonal tension as
well as previous attempts to formulate a theory of incom-
plete diagonal tension. A simple semiempirical theory
of incomplete diugonal tension that includes the cases of
pure shear and of pure diugonal tension ox limiting
cases is then presented.

The second part of the paper describes strain measure-
ments made by the A? A. 0. A. to obtain the necessary
coe&wiento for the proposed theory. Some measurements
of buclcling defections were al-so made by the N. A. C. A.
Strain meawrement.s and de$ection measurements made
elsewhere are evalwated in the light of the proposed theory.

The third part of the paper discusses the stress analysis
of diugonal-tension beams by means of the proposed
theonJ.

An attempt has been made to utilize all available
material so that the current state of knowledge on the
stress analysis of diugonal-tension beams might be
presented in a form useful to the stress analyst.

INTRODUCTION

The basic concept of diagonal-tension beams was
introduced into aeronautical literature by Wagner in
reference 1, which presents a very complete theory.
The principles of this theory, insofar as they interest
the practical designer, are summarized in reference 2.
Brief reviews of the basic principles of the theory are
also given in a number of other articles and textbooks,
such as references 3 and 4.

Experience has shown that the theory of diagonal
tension as presented in references 1 to 4 is, in many
cases, entirely too conservative. The principal reason
for the discrepancy between theory and experimental

data is evidently the fact that the sheet continues to
carry shear, that is, diagonal compression, after buck-
ling so that the state of pure diagonal tension is only
a theoretical limiting case which is asymptotically
approached but never reached in an actual structure.
Wagner himself published, in reference 5, the results of a
series of tests designed to give empirical data for in-
complete diagonal-tension fields, but doubts have been
voiced about the applicability of the results to diag-
onaI-tension beams of practical proportions. The
N. A. C. A. therefore conducted an investigation of
diagonal-tension beams, the results of which form the
subject of this paper.

The paper is divided into three parts. The first part
deals with the theory. Wagner’s theory of the pure
diagonal-tension field is briefly reviewed, as are pre-
vious attempts to develop a theory for the incomplete
diagonal-tension field. A simple semiempiricaI theory
for the incomplete diagonal-tension field is then pre-
sented; this theory includes as limiting cases the cases
of pure shear and of pure diagonal tension. The buck-
l~g ~der she= stressesof Unstiffened sheet ~d of

stiflened sheet is discussed.
The second part of the paper deals with the experi-

mental results. Strain measurements made by the
N. A. C. A. are described; these tests were used to estab-
lish the coefficients for the proposed semiempirical
theory. The results are well confirmed by measure-
ments made by the Douglas Aircraft Co. on a large
beam; thanks are due the Douglas Co. for their cour-
tesy in permitting the publication of these results. On
three of the N. A. C. A. test set-ups, the buckling de-
flections of the uprights were measured; these tests as
well as other tests on buckling are discussed. The
N. A. C. A. tests were performed in the spring and sum-
mer of 1939 by Patrick T. Chiarito of the Laboratory
staff.

The third part of the paper shows how the results of
this investigation are applied to stress analysis.

The three parts of this paper are largely independent
of each other, but it is recommended that part I be
read before using part III.

387



—.-—. —. —— — ... _. . .

388 REPORT NO. 697—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

I. THEORIES OF DIAGONAL-TENSION ACTION AN1

AUXILIARY THRORIES

THEORY OF THE PURE DIAGONAbTENSION FIELD,.

The theory of beams with webs working in pure
diagonal tension was presented by Wagner in reference
1. It assumes that the sheet constituting the web of the
beam has no bending stifhwss. Under the action of the
shear stresses, the web will then form a large number of
narrow and shallow folds inclined at an angle a to the
flanges; the stress in the sheet is pure tension in the
direction of the folds. The theory given in reference 1
is so comprehensive that no additional contributions of

. .

FIGUREl.—DiagmraMensionbeam.

great importance have been made since it was published.
Mention might be made of the study given in reference
6 dealing with beams having sharply inclined flanges.

The essential principles and resuh% of the theory have
been given in several places, for instance, in references
2, 3, and 4, and are sufficiently well known to aero-
nautical engineers to obviate very detailed discussion
here. It will suflice to recall that the basic case is that
shown in figure 1. If the flanges and the uprights are
heavy, the angle a is 45°; the compressive force on each
upright is then

(1)

Each flange is acted upon by the primary beam force
F=M/h and by a compressive force

H=: (2)

that balances the horizontal component of the diagonal
tension in the sheet. The tensile stress in the web is

2T_2 S’=.——
G C, htC,

(3)

where t is the thickness of the sheet and 7 is the nominal
shear stress, while 02 is a stress-concentration factor
that depends on the flexibility of the flanges (references
1 and 2). ‘I’he factor Cz was given by Wagner as a
function of a flexibility parameter designated cod and
defined by

(4)

where IT and Ic are the moments of inertia of the ten-
sion flange and the compression flange, respectively
(references 1 and 2). .

The secondary bending moments in the flanges
caused by the vertical component of the diagonal ten-
sion are given by

M=k~C1Sd2/h (5)

where k~f= X2 over the uprights and kaf= %4 midway
between the uprights. The factor C!l again depends
on the flexibility parameter ad (references 1 and 2).

For convenience, the graph showing Cl and Cz is
reproduced here from reference 1 as figure 2.

If each flange is inclined at a moderate angle 8/2 to
the horizontal axis of the beam, the shear S in equations
(1) to (5) is the web shear given by

SW=S.–~ tan 8 (6)

where SE is the external, or “applied, shear.
Beams that differ materially from the basic case, for

inAance, beams with inclined uprights or sharply in-
clined flanges or beams with axial load, will not be
discussed in this paper.

PREVIOUS THEORIES OF INCOMPLETE D1AGONALTENS1ON FIELD

Practical experience has shown that the theory of
pure diagonal tension is, in many cases, entirely too
conservative. The principal reason for the disagree-
ment between theory and experiment will be found by
considering the stresses due to shear acting in the web
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FIGVRE2.—Theoreticalstressfactorsfor puredingormltension (from mferouco1).

;heet after buckling; the stresses in the web due to beam
~ction are neglected in this discussion.

The state of pure shear that exists up to the buckling
?oint in the web is equivalent to tensile and compres-
sive stresses of equal magnitude acting at angles of 450
;O the horizontal and the vertical axes. In the pure
iiagonal-tension field, the compressive stress is zero
md the tensile stress is twice as much as it would be
in the corresponding state of pure shear. As the shear
force on a beam web increases beyond the buckling
point, however, the compressive stress corresponding
to the shear does not vanish suddenly and completely.
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Some compressive stress continues to exist, and this
diagonal compression combines with part of the diag-
onal tension into a shear stress. As the shear force
increases to higher and higher values, the relative im-
portance of the compressive stress decreases and the
condition of pure diagonal tension is approached more
and more closely but is never quite reached in an actual
beam. The finite strength of the material -will permit
a failure before the diagonal-tension field is fully devel-
oped; in other words, practical design has to deal with
webs constituting an incompletely developed diagonal-
tension field somewhere between the limiting stages of
pure shear and pure diagonal tension.

A number of authors have adopted an assumption
sometimes used in the analysis of trusses with double
diagonals, namely, that the compressive stress remains
constant after buckling and equal to the stress at
buckling. Under this assumption, only the excess
stress over the buckling shear stress is converted into
diagonal tension, while a shear stress equal in magni-
tude to the buckling stress is carried by the sheet as
true shear. This assumption can be written

7D~= v—rC,=7(l ‘7.,/7) (7)

where ~ is the purely nominal applied shear stress S’/ht,
7D~is the part of the applied shear stress that is carried
M diagonal tension,. and r., is the critical stress that
continues to exist as a true shear stress. The second
form of writing the expression indicates that the diag-
onal tension is a function of the ratio 7,,/7, which is the
inverse of the loading ratio 7/7,,, that is, the ratio of the
applied stress to the buckling stress or of the applied
load to the buckling load.

Wagner himself proposed (reference 7) to apply the
assumption expressed by equation (7) to the analysis of
curved diagonal-tension fields. In such fields, the load-
ing ratio T/T., at the design load probably never exceeds
10 and is generally below 5 because the folds become
objectionably deep soon after buckling occurs and
permanent set and failure soon follow.

In plane diagonal-tension fields, the loading ratio is,
as a rule, much higher than in curved fields and equa-
tion (7) was experimentally found to be inadequate to
deal with such cases. Realizing this weakness of the
theory, Wagner conducted experiments (reference 5)
that were intended to give empirical relations for the
stresses in incomplete diagonal-tension fields. Ques-
tions have been raised, however, about the direct ap-
plicability of the test results to practical design.

Schapitz (references 8 and 9) developed a theory of
the incomplete diagonal-tension field, including at the
same time the effect of superposed normal stresses on
the panel. He began with an assumption on the stress
distribution within the panel, leaving one basic param-
eter (two for curved panels) free to be adjusted so
that the results would fit experiments. Like all other
authors preceding him, he assumed the diagonal com-
pression to be constant after buckling. Attempts to

407300”41—26

correlate this theory with the N. A. C. A. tests have
been unsuccessful.

PROPOSED NEW THEORY OF INCOMPLETE DIAGONAL-TENSION
FIELD

Test observations have shown that the behavior of
a shear web working in partial diagonal tension is often
quite irregular and is apparently influenced by a number
~f factors which cannot be evaluated. This observation
is, of course, merely a repetition of similar experiences
in the study of built-up structures of thin sheet metal,
but it again emphasizes the fact that too much accuracy
should not be expected from a “rigorous” and perhaps
mathematically very elaborate theory if the physical
action of such complicated structures depends on en-
tirely too many unknown and uncontrollable factors.
In view of the fact that the ultimate aim of any engi-
neering theory of stresses is application to practical de-
sign work, it seems rational under such circumstances to
develop a theory with an eye toward ease of appli-
cation.

A modification of the theory given in reference 10
for curved diagonal-tension fields was found to describe
the experimental facts with an accuracy compatible with
the scatter of the test points. The basic assumption of
this theory is that the total shear force in the -web can
be divided into a shear force carried by shear in the
sheet and a shear force carried by diagonal tension;
this assumption may be written as

8=l!ij+sD,

or

SDT=k8 and&=(1 –k)S’ (8)

where k is the fraction of the total shear that is carried
as diagonal tension.

The diagonal-tension fraction k is assumed to be
given by the expression

k= (1–-T.JT)” (9)

The form of this expression was suggested by formula
(7). According to Wagner (reference 5), the degree of
development of the diagonal tension is a function of
au/r, where uu is the compressive stress in the upright.
Experimental values of n derived from the N. A. C. A.
tests to be described in part II were therefore plotted
against uu/r; the relation between n and wu/r could be
expressed by

n=l+5uU/r (lo;

For beams with very heavy uprights (uu-0) the
assumption expressed by equations (8), (9), and (10)
reduces to that given by equation (7); that is, the true
shear in the sheet remains constant after the buckling
load is passed. For finite values of au, however, the
true shear continues to increase according to equations
(8), (9), and (10) after the buckling load has been
passed. This distinction is the main difference between
the proposed new theory and the existing theories.
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It is assumed, at variance with the assumptions of
reference 10, that a certain effective width of sheet aids
the uprights in carrying the compression stresses due
to the vertical component of diagonal tension; similarly,
a certain effective width of sheet .is assumed to aid the
flanges in carrying the compression stresses due to the
horizontal component of diagonal tension. In each
case, the effective width is assumed to be proportional
to the amount of true shear stress in the sheet; the
effective cross-sectional area of the upright is therefore

AUc=llu+(l-k)td (11)

where AU is the area of the upright proper; the effective
area of each flange is

AFe=Ap+}i(l–k)ht (12)

The manner of measuring the areas and the distances
of the preceding equations is indicated in figure 3.

Before the effects of the diagonal tension can be
computed, the angle a of the diagonal tension must be
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FIGURE3.—Conventionsfor measuringdEtanwsandareas.

found. It should be borne in mind that the direction of
the folds is of no interest; only the direction of diagonal
tension is of interest. In the pure diagonal-tension
field the direction of the diagonal tension coincides with
the direction of the folds. In the incomplete diagonal-
tension field, however, there is no such simple relation,
quite aside from the fact that the shape of the sheet
shortly after passing the buckling load can badly be
described as a series of straight and parallel folds, as a
glance at the contour map of the deflection surface will
show (references 4 and 11). A general qualitative
consideration of the theory of buckling under shear
stresses (references 4 and 11), of pwre diagonal-tension
theory (reference 1), and of all available test results led
to the conclusion that it should be sufficiently accurate
to assume the angle of diagonal tension a to be 45° when
dealing with beams reasonably close to the basic case of
figure 1. If the average actual angle Mere iiom 45°
(according to Wagner, it is about 40° or 42° for pure
diagonal tension), the difference will be automatically
taken care of by the experimental determination of the
exponent n in equation (9). The importance of varia-
tions of a due to change of design proportions within

probable limits will be overshadowed by scatter due to
unknown and uncontrollable causes.

With the assumptions previously enumerated, the
formula for the stress in an upright is obtained by
combining equations (l), (8), and (11) as

kSd kSd i%td
“u=~U~=h[Au+ (1–k)dt]=AU+ (1–lc)dt

(13)

The formula for the compression stress in the flange
caused by the dlagomd tension is obtained by com-
bining equations (2), (8), and (12) as

kS _ kS
‘F—2AFe 2AF+ (1–k)ht

(14)

Formula (13) must be solved by trial and error bemuse
k is a function of au. A value of au is assumed;
n is calculated by formula (10); k, by equation (9);
and, finally, au, by equation (13). If this value does
not agree with the assumed value, the process is re-
peated with an improved value. Three repetitions of
the computation are usually sufficient to obtain a
precision of about 1 percent or better, but the process
is somewhat tedious because it involves fractional
powers. ‘

Figure 4 is a chart that eliminates the necessity of
this calculation in most prkctical cases. In stress-
malysis -work, the shear stress T and the ratios r/7C, and
A#d will be given and UU/T can be found from the
?hart, so that au is determined. The diagonal-tension
haction k can then be calculated from

~= uu(l+Ad@
7(1+ UJT)

(15)

m it can be found from figure 4 by inspection and up
:an be found by using equation (14).

The secondary bending moments in the flanges will
be calculated by using equation (5) after substituting
S’Dr for S. The values to be used for k~~will be dis-
mssed in part II; the experimental evidence shows the
theoretical values M2and X4 to be unsatisfactory.

The design chart of figure 4 corresponds to the
iesign chart given by Lahde and Wagner in reference
j. Comparison of the two design charts shows that
jhe chart of figure 4 is considerably less optimistic than
~he one of reference 5; in order to keep the stresses in
he uprights of a given beam down to a given allowable
ralue, figure 4 demands a larger cross-sectional mea of
;he uprights than does the chart of reference 5.

BUCKLING OF FLAT SHEET SUBJECTED TO SHEAR STRESSES

The exact solution for the critical shear stress of an
niinitely long plate given in reference 11 includes the
mse of the plate with clamped edges as well as the
xise of the plate with supported edges. Approximate
;olutions for plates of finite length with supported
}dges are given by Timoshenko (references 4 and 12).
L few approximate values for plates of finite length
tith clamped edges are given in reference 13.
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The critical stress can be expressed by the general
equation

7-.,=KE(t/b)’ (16)

The values of K are given in figure 5, which is based
on average values from all the sources just named.

No solutions appear to have been published for
plates with some edges clamped and some edges sup-
ported. Approximate values for K may be obtained
for such cases by interpolating between the two curves
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~QUBE5.–Critical shearstressfor isotropicplates. r“=KE (t/b)2.

of figure 5 with the ratio of the length of the clamped
edges to the total length of all four edges of the plate.

BUCKLING OF ORTHOTROPIC PLATES SUBJECTED TO SHEAR
STBESSES

An anisotropic plate is a plate that has difTerent
elastic properties in diilerent directions. It can be
represented by a plate with two systems of stiffeners
attached to it. b the particular case in which the
two sets of stiffeners are at right angles to each other,
the plate is called orthogonally anisotropic or, briefly,
orthotropic. If the uprights of a plate girder are
arranged at right angles to the axis of the beam, ‘the
web with the uprights constitutes an orthotropic plate;
in this case the second stiilener system at right angles
to the main system is merged with the plate; that is,
the plate itself constitutes the second stif?-ener system.
I On reaching a certain critical shear load, an ortho-

tropic plate will form buckles similar to the shear
buckles formed by an isotropic plate. This buckling
involves the sheet and a large number of stiffeners at
the same time and is therefore sometimes referred to as
“general elastic instability” in order to differentiate
it from ‘~local instability,” which involves only the

sheet panels between stiffeners. The critical shear
force at -which an infinitely long plate with supported
edges begins to buckle is given by references 14 to 17
as

(17)

\vhere I is the moment of inertia of one upright
including the sheet and d is the distance between the
“center lines of uprights. If the edges are clamped,
the factor 27.8 is substituted for 17.5. It should be
noted that clamping of the edges involves two require-
ments: The sheet and the uprights must be clamped
to the beam flanges, and the beam flanges must be pre-
vented from twisting about their longitudinal axes.
In actual structures, the flanges will probably be much
closer to the supported condition than to the clamped
condition.

The half--wave length of the buckles is given by

x=o.55h
4/@
VT (18)

for a plate with supported edges; for a plate with
clamped edges, the coefficient 0.55 is changed to 0.37,

The theory is strictly valid only if the stifl’ener spacing
d is infinitely close. For practical purposes, the in-
fluence of fhite stiifener spacing may be expected to be
negligible if d<X/3. The limit of applicability is
reached theoretically when d is about equal to X, but
good agreement has been found experimentally in a
few cases when this limit was slightly exceeded (ref-
erence 16).

Equations (17) and (18) are obtained from the theory
of references 14 to 17 on the simplifying assumption
that the horizontal bending stifFness per running inch
Ih=t’/l2 is negligible compared with the vertical
bending stifhess per running inch Io=I/d, or that
the ratio 12.I/d& is large. In the limiting case of a
sheet without stiffeners, when this ratio equals unity,
equation (17) gives a critical stress about 44 percent
too 10W.

It should be remembered that the theory of aniso-
tropic buckling strictly applies only to a plate girder
in which the web has not buckled between uprights into
a diagonal-tension field. As long as the loading ratio
is not too high, however, the theory should apply
reasonably well to diagonal-tension beams.

BUCKLING OF UPRIGHTS IN DIAGONAL-TENSION FIELDS

The uprights in diagonal-tension fields act as columns
and are therefore subjected to the same general types
of failure that occur in free columns, namely, primary
column failure by general buckling or bending, pri-
mary column failure by twisting, and secondary

failure by local buckling or crippling (reference 18).
The presence of the web, however, may modify the
details of the failures and may materially change the
stresses at which the failures occur, assuming that the
uprights are riveted to the web as is standard practice.



THE INCOMPLETELY DEVELOPED PLANE DIAGONAL-TENSION FIELD 393 0

Primary column failure by buckling out of the plane
of the web is the most obvious possibility of failure and
was thoroughly investigated by Wagner in reference 1
for the pure diagonal-tension field. The -web under
diagonal tension acts as an elastic foundation for the
uprights and stabilizes them against buckling. Curves
giving the ratios of the theoretical buckling load VT of
the uprights to their Euler loads PE were shown in
reference 1 and are reproduced for convenience in
figure 6.

The load VT applies directly only when the uprights
me very long. In general, it will be necessary to com-
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FIGURE&--RclMon betweentheoreticalbucklingloads VT ofuprightsand Euler
loads.PB=#liZ/hi(fromreferenee1).

pute the eflective column length L from the formula

(19)

With this efl!ective length, the effective slenderness
ratio L/P can be computed; the allowable stress is then
obtained from the appropriate column curve.

The buckling of uprights in incomplete diagonal-
tension fields is a very complex phenomenon, and there
is little hope that theoretical solutions will be obtained
in the near future. The following approximate method
is therefore suggested:

The bracing effect of a web in pure diagonal tension
on an upright with pin ends is measured by the dif-
ference VT—PE. The bracing effect of an elastic
foundation is very nearly proportional to the founda-
tion modulus (reference 4); the foundation modulus of
the web is proportional to the diagonal tension and may
therefore be assumed to be proportional to the diagonal-
tension fraction k, if the bending stifi%ess of the sheet is
neglected. For an incomplete diagonal-tension field,
the bracing effect of the web might therefore be as-
sumed to be k(V~—PE). The tests by Li.mpert
(reference 19) discussed in the second part of this paper
suggest, however, that this estimate may be too
optimistic. Until more extensive test data are pro-
duced to justify the assumption just made, it seems

advisable to use a more conservative one. The as-
sumption that the bracing effect is proportional to
k2(V~—PE) gives a reasonably close approximation to
Limpert’s tests, as will be shown later. With this
assumption, the effective column length to be used in
computing the slenderness ratio becomes

‘=&+D
—. (20)

where D=~–1
E

In Limpert’s test report, no mention is made of actual
failures. It is therefore possible that failure to realize
the full bracing effect proportional to k WRS only ap-
parent and was caused by stopping the tests too early.

If the uprights are assumed to have some end fiity,
the Euler load Pz in the expression for D must be
replaced by the column load corresponding to the
wsumed fixity and h must be replaced by the effective
length of a free column corresponding to the assumed
fixity; for instance, if the fixity coefficient is assumed
LObe 4, then

D=~–1
4PE

m d

Twisting failure of columns attached to a web was
treated in reference 18 on the assumption that the sheet
forces the center of twist of the column into the plane of
the web. Undoubtedly the web also tends to aid the
upright against twisting by virtue of having bending
sttiness and by virtue of being under diagonal tension,
although this effect may be small in many cases because
uprights susceptible to failure by twisting are usually
attached by a single row of rivets incapable of trans-
mitting high torques from the web to the upright.
There appears to be no published theory that takes the
effect into account.

Failure by local buckling or crippling has been
theoretically treated for a number of simple cross-
sectional shapes; the most important types for the
present purpose are treated in reference 20.

Thus far, mention has been made only of the stabil-
izing effect exerted by the web on the uprights. Un-
fortunately, there is also an opposite effect. The
theory assumes the diagonal-tension folds to be very
small. In fact, however, these folds are quite large;
test experience has shown that, in most cases, one fold
begins at each upright of a beam. The wave lengths
of these folds are therefore comparable in order of
magnitude with the wave lengths corresponding to
primary and secondary column failure, and the folds
tend to hasten the appearance of column failure in the
uprights. Apparently no theory has been published
that describes this premature forcing of failure.



——— —.—..~. —-. ——.

394 REPORT NO. 697—NATIONAL ADVISORY COWMITT!EE FOR AERONAUTICS

Qualitatively, it is clear that the forces exerted by the
web folds on the uprights convert the problem of
upright failure from a pure stability problem into a
stress problem; the case is analogous to the problem of
columns with side load or with eccentric loading com-
pared with centrally loaded columns.

II. EXPERIMENTAL INVESTIGATIONS ‘

N. A. C. A. STRAIN-GAGE TESTS-SPECIMENS. PROCEDURE, AND
ACCURACY

In order to appraise the validity of the proposed
theory of the incomplete diagonal-tension field and in
order to establish the value of the exponent n in
equation (9), two beams were built and tested by the
h~. A. C. A. The pertinent dimensions of these beams
are given in figure 7; figure S gives a general view of the
test set-up. The two beams will be designated by their
depths the 20-inch beam and the 10-inch beam.

Figue 9 shows a test se~up of the 20-inch beam tith

2-inch Tuckerman gages on five uprights and l-inch
Tuckerman gages on the flange above two uprights.
This figure also shows part of the structure used to
provide lateral stability, the horizontal trussing being
~dden from view behind the beam. Figure 10 shows
an early set-up of the 10-inch beam.

The web and the flanges were 17S-T aluminum alloy
and the uprights were 24s-T aluminum alloy. The
uprights were interchangeable so that their spacing

could be varied and difFerent types of upright could be

used. The two types of upright used for strain measure-
ments are shown in figure 11. It will be noted that the
uprights were always symmetrically arranged about tho
-web; strains were always measured on both sides with
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FIGURE7.—Diagonal-tensiontestbeams.

opposing gages and the compressive strains in the up-
rights were obtained by averaging corresponding
strains. The superposed bending strains and stresses
caused by unavoidable eccentricities in the uprights
may be considered as secondary effects analogous to
the secondary stresses in trusses with rigid joints,
that is, the term “secondmv” does not neCessa~ilY

imply that they are negligible:
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Figure 11 shows both types of upright in a somewhat
peculiar “arrangement (b) that calls for some explana-
tion. In order to vary the critical stress without chang-
ing the general arrangement of the beam and also in
order to obtain some idea of the effect of preventing
buckling of the web in the immediate vicinity of the
uprights, some tests were made on the 10-inch beam
with the web entirely free from the uprights. The set-up
for these tests was accomplished by using bolts and
spacer tubes to connect the two parts of each upright;
the web was pierced by holes sticiently large to clear
the spacer tubes.

-+lii$-(a) *(a)

11–b –~-_

8;

11
t-- 1

Q

4=%2- -: I 3-Z—: :_ —,, —
11

m b)

Type I Type ~
FIGUREIl.—Uprightsfor diagonal-tensionbeams.

Beam Arm I +, “ , 4,=
(i%) (i:.) (sq in.) [in.) (Sqin.)

— — — — —

2@in---------- 0.1;1 0.579 0.075S 1/32 0.0345
10-in.-... ----- .129 .62.5 .0s06 1/32 .0346

. Nominaltldckness.
~Determinedby weighing.

Tuckerman optical strain gages of 2-inch gage length
were used on the uprights. The same type of gage was
used on the flange in a few cases but, in general, Tucker-
man g~wes and Euggenberger gages of l-inch gage
length were used on the flanges because the secondary
bending stresses vary from a positive maximum to a
negative maximum within a distance of half the spacing
of the uprights. The Huggenberger gages were used in
paire, back to back, and their results were averaged
because sometimes considerable differences of stress
were found between the two halves of the flange. The
Tuclierman gages had, in effect, three-point support
and automatically eliminated this trouble, as was found
by check tests against the Huggenberger gages.

All tests were repeated once and averaged. The
repeat tests agreed, in general, to within about 100
pounds per square inch with the first tests, although
differences of 200 pounds per square inch sometimes
occurred; larger differences were rare. The diilerences
between presumably identical stationa, however, were
sometimes very large. For this reason, the graphs show-
ing stresses in the uprights give the group average of all
the uprights tested on a given beam as well as the
maxtium compressive stresses measured. It should be

kept in mind that all experimental upright stresses,
including the maximum values shown, represent com-
pressive stresses in the median plane obtained by aver-
aging opposing gages, never individual stresses obtained
from a single gage.

The smallest stress reading is 20 pounds per square
inch on a 2-inch Tuckerman gage, 40 pounds per square
inch on a l-inch Tuckerman gage, and 100 pounds per
square inch (estimated) on a Huggenberger gage. The
temperature error, which amounts to about 50 pounds
per square inch per degree Fahrenheit, was kept small
by keeping the room temperature constant within
about 10 F. Errors in load maybe as much as 1 percent
at loads above 1,000 pounds and somewhat higher at
lower loads; these errors were caused by creep in the
test set-up that sometimes occurred while strain read-
ings were being taken.

For purposes of reference, table I is included ‘m a
key chart of the main tests. Each test is designated
by a double number. The first number, either a 20 or a
10, identifies the beam as being either the 20-inch or the
10-inch beam; the second number designates the type
of upright and the spacing of the uprights.

STRESSES IN UPRIGHTS OF N. A. C. A. 20-lNCH BEAM

Stresses in uprights at midheight.-l?igure 12 shows
the stresses measured in the uprights of the 20-inch
beam and the stresses predicted by using figure 4.
The crosses denote the group average of the stresses in
the uprights, the “group” including all the uprights on
which strains are measured as indicated on the smrdl
sketches of the beam. The circles give the maximum
compressive stresses measured.

The critical stresses for the sheet were computed by
formula (16), assuming clamped edges except in the
case of the channel uprights where the stress Tcr was

calculated on the assumption that the two edges of
the sheet along the channel uprights were simply
Supported.

The break in the course of the experimental points
For setiup 20–1 was caused by lateral failure of the
flange. The test had to be stopped and additional
lateral supports had to be added before the test could
be continued to higher loads.

A rather significant comparison maybe macle between
the results of set-ups 20–6 and 20–7. After the first
~est had been completed, the uprights were unbolted
md uprights of type II were bolted on where uprights
]f type I had been, and vice versa. For all practical
yn-poses, then, the two set-ups were identical and the .
]hysical structure was the same. In spite of this fact,
;he stresses measured in the uprights of type I in the
irst test were very much higher than the calculated
;tresses (fig. !2 (f)); whereas, the stresses measured in
;he second test agreed quite well with the calculated
ntresses (fig. 12 (h)). The absolute magnitude of the
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stresses was rather low but the tests on set-ups 20-6
and 20–7 appeax to be quite reliable, as indicated by
the relatively small spread between group average and
maximum stresses. The only possible conclusion is
that stress d.iilerences of 20 or 30 percent can be caused

the end being on the average 0.62 times the stress at
midheight. This effect may be spoken of as a “gusset
effect,” explained by the fact that the sheet in the corner
is effectively prevented from buckling and thus forms a
corner gusset increasing the effective area of the upright.

J
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FIGURE13.—Stre.ssesin uprightsof N. A. C. A. Winch besm at midheightand nearends.

in diagonal-tension beams by circumstances beyond
any reasonable shop control.

tilde horn this “wild” test, however, the agreement
between calculated and observed strains is sufficiently
uniform to validate the use of the proposed theory.
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FIGUIiE14.—Gussetfactor,k,.

Stresses near ends of uprights; gusset effect.-ll’or
set-ups 20-2 to 20-5, the stresses in the uprights were
measured at stations 3.25 inches from the two flanges.
Figure 13 shows these stresses as well as the stresses at
midheight. It will be seen that a very consistent
relation exists between these stresses, the stress near

Except possibly for very close spacing of the uprights,
the gusset effect probably depends primarily on the
ratio y/t, where y is the distance of the station on the
upright from the nearest flange. If this assumption is
true, the effective size of gusset is constant for a given
sheet thickness. Consequently, if the sheet thickness
is kept constant and the depth of the beam is decreased,
a point will be reached where the gusset extends to the
midheight and then across this line; for shallow beams,
then, the stress at midheight will be affected by the
gusset. The theory of gusset effect may be put on a
quantitative basis by assuming that equation (13) gives
the stress -when the ratio y/t is very large; for small
ratios of y/t, this stress must be multiplied by a gusset
factor k, less than unity. Figure 14 is a curve of gusset
factor against y/t based on the measurements of figure
13 and on the assumption that the factor approaches
unity for y/t= 500, which is about halfway between the
values of h/2t for the N. A. C. A. 20-inch beam and the
Douglas beam to be discussed later. This curve is
based on extremely meager data and consequently
should not be used for design. It is shown only because
it was used to estimate the gusset effect for the
N. A. C. A. 10-inch beam to be discussed later; for this
purpose, only the full-line part of the curve was needed.
For design purposes, it is suggested that the conserva-
tive straight line indicated be used until more extensive
tests establish the curve more securely.

The gusset effect probably also tends to reduce th~
stress ar in the flanges. The tests as made did not
furnish the necessary information to evaluate these
reductions. The practical importance of these reduc-
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tions being very small in most cases, no undue weight
penalty is p%id for neglecting them in design work and
using the full values of u~. A gusset effect also influ-
ences the secondary bending moments in the flanges,
as will be shown later.

STRESSES IN UPRIGHTS OF DOUGLAS BEAM

Through the courtesy of the Douglas Aircraft Co.,

the inclusion here of the results of strain-gage measure-
ments on a large diagonal-tension beam was made
possible. A sketch of this beam is shown in figure 15;
the lettered uprights indicate strain-gage stations. The

FXOURE15.—Douglasteatbeam.

depth of the beam is about 40 inches near the middle of
the beam and the web thickness is 0.036 inch. The
value of h/t is therefore slightly over 1,000, or slightly
higher than for the 20-inch N. A. C. A. beam. The
beam gives a valuable extension of the test range in
absolute size and particularly in stress. The maximum
nominrd shear stress on the N. A. C. A. beam was only
about 6 kips per square inch, which is within the pro-
portional limit; on the Douglas beam, the nominal

shear stress varied because of taper between 15 and 18
kips per squaxe inch in the regi& of the gage stations
at a load of 23.4 kips, the highest loading at which
strain measurements were taken. If the validity of
formula (3) is assumed, the tensile stress in the web
varied from 30 to 36 kips per square inch. Reference
21 gives, for 24S-T Alclad, a value of 27 kips per squaxe
inch as the proportional limit and of 37 kips per square
inch as the yield point. The average stress in the web
was therefore practically up to the yield point and, at
the crests of the folds and other places of stress con-
centration, was beyond the yield point. According to
the test report, definite permanent set had occurred in
the web at a 20 percent smaller load.

Figure 16 shows the experimental and the calculated
stresses of the Douglas beam. In view of the ever-
present possibility of large inexplicable deviations, the
agreement is, on the whole, quite satisfactory. Only
at low loads is there a peculiar tendency for the ob-
served stresses to be much higher than the calculated
stresses.

STRESSES IN UPRfGHTS OF N. A. C. A. 10-1NCHBEAM

Figures 17 (a) to 17 (c) show the stresses measured on
the uprights of the 10-inch beam in the “web-clamped”
condition; the crosses again indicate the group average
of all measured stresses and the circles give the maxi-
mum stresses measured. The calculated stresses -were
obtained by using the design chart of figure 4 and mul-
tiplying the stresses with a gusset factor of 0.72 ob-
tained from figure 14.
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In all three cases (figs. 17 (a) to 17 (c)), the computed
stresses are on the conservative side—that is, higher
than the observed stresses, even when the maximum
experimental stresses rather than group-average stresses
are used as the basis of comparison. On the basis of
the maximum stresses, the average difference for all
three tests between computed and observed stresses is
about 20 percent; on the basis of group-average stresses,
it is about 27 percent. Comparison with the results for
the 20-inch beam indicates that a lower value of h/t
permits the bending stifhess of the sheet to play a rela-
tively greater part and to delay somewhat the develop-
ment of the diagonal-tension field; equation (10) should
therefore probably contain a factor involving h/t. The
existing data are too few to establish this factor; but it
may be concluded that, when h/t is about 500, the cal-
culated stresses ar~ sufficiently conservative to be taken
as the maximum upright stresses rather than as group
average upright stresses.

Figures 17 (d) to 17 (g) show the stresses measured
in the uprights of the 10-inch beam in the ‘~-web-free”
condition. The stresses calculated by using figure 4
fit the maximum stresses reasonably well but are very
conservative compared with the group-average stresses.
It should be noted that the free -web acts in a very non-
uniform manner, the maximum upright stresses amount-
ing to nearly twice the group-average stresses. It is
therefore difficult to compare the accuracy of calcu-
lating the web-free condition with the accuracy of cal-
culating the web-clamped condition. Under any con-
dition, however, the calculations for the 10-inch beam
are more conservative than the calculations for the
20-inch beam with its larger h/t ratio.

SECONDARY BENDING MOMENTS IN FLANGES OF N. A. C. A. BEAM

The flange stresses were measured in the two
N. A. C. A. beams at the outside fiber of the compres-
sion flange. These stresses arise by superposition from
three individual sets of stresses: the primary beam
stresses @, the compression stresses UF c-d by the

horizontal component of the diagonal tension in the
web, and the secondary bending stresses us~ caused by
the distributed vertical component of the diagonal
tension.

The primary beam stresses u~ at a station z inches
from the tip were computed by the ordinary beam
formula

D.

where Z is the section modulus of the entire beam.
11’or the computation of the section modulus of ,the
beam, the material active in bending was assumed to
be the material indicated by cross hatching on the cross
sections shown in figure 3. Deduction of the beam
stresses from the observed stresses yielded the stress

differences (u~~,,,.z— UZJ shown in figures 18 (a) and
18 (b). The compressive stresses u; were then” com-
puted by formula (14). By deduction of u. from the
stress differences (UO~,,,O,a—aB) the secondary bending
stresses uSDwere obtained as indicated in figures 18 (a)
and 18 (b) for the maximum loads.

Comparison of the stresses @B in figures 18 (a) and
18 (b) shows that the secondary bending stresses are
higher between the uprights than at the uprights. In
a continuous beam of constant cross section, the stresses
between supports are lower than or, at the most, equal
to the stresses at the supports. The observed relation
between the stresses can therefore be explained only by
assuming that the previously discussed gusset effect
increases the effective section modulus of the flange near
the uprights. If the flange can no longer be considered
as a beam of constant cross section, the coefficients
k~ used in equation (5) must be changed.

In most practical cases, the secondary bending
stresses are not sufEciently important to warrant the
trouble of calculating the flange as a beam of variable
cross section. A single moment coefficient k~=O.10
was therefore chosen to represent the maximum bending
moments in the flange, with the understanding that
these moments occur between uprights but that the
moments at the uprights may sometimes be practically
as large as the maximum moments. The numerical
value 0.10 was chosen because it is conservative for all
experimental results and because it is reasonably close
to the theoretical value of MZ for the maximum
moment in the limiting case of pure diagonal tension.
When the secondary bending stresses are computed from
the bending moments, the section modulus of the indi-
vidual flange is computed for the cross-hatched area Ar
indicated in figure 3, but an allowance should be made
for rivet holes.

The secondary bending stresses @B shown in figure
18 (a) were multiplied by the section modulus of the
flange to obtain the secondary bending moments. For
comparative purposes, moment coefficients defined by
the equation

M=kmSD&2/h

were calculated from these moments and are plotted in
figure 19 against the loading ratio. These coefficients
kn differ from the coefficients kfi, because the flexibility
factor C, has been taken as unity. Figure 19 shows
that the moment coefficients generally increase with
loading ratio, but it is probably safe to assume that the
rate of increase will drop rapidly with somewhat higher
loading ratios. Set-up 20–1 diilers quite radically in
having very high moment coefficients decreasing very
rapidly. The loading ratios are low for this set-up,
and the trend of the moment coefficients is probably
not typical but falsified by accidental sources of error
that play a relatively large part at low loading ratios,
as shown throughout these tests.
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For the highest load used on each set-up, the experi-
mental w-dues of kmwere divided by the chosen standard
value klr= 0.10 in an attempt to check experimentally

the influence of the flex-.-bility parameter ad. I?igure 20
shows the results. Taken in conjunction, figures 19 knd
20 indicate that the formula

M=O.1O C,&,d’/h (21)

gives, in general, very conservative values for the

secondary bending moments in the compression flanges
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at low loading ratios; as the loading ratio increases, the
formula becomes less conservative, but it will probably
never become unconservative, assuming of course that
the comparison is made with average experimental
values and not with individual high values.

On sehups 20–1, 20–2, and 20–3, the secondary
benchg moments were obtained on the tension flange
of the beam for the same maximum loads that had been
used for the measurements on the compression flange.
The seconds y moments -were, respectively, 25, 16,

iand 41 pert nt of the corresponding moments on the
compression flange. These differences are explained
as follows: The tension delays development of the
folds near the flange, and a strip of the web adjacent
to the flange remains plane. This strip adds to the

moment of inertia of the flange and helps the flange

to carry the secondary moments. Obviously, the

magnitude bf the help increases with the ratio of
tension stress to shear stress and decreases with increas-
ing loading ratio.

A number of measurements were made on the com-
pression flange of the N. A. C. A. 10-inch beam. All
the bending-moment coefficients obtained from these
measurements were considerably below the coefficients
obtained for the 20-inch beam; it was therefore con-
sidered not worthwhile to show them.

BUCKLING OF THE WEB SHEET

The coefficients K given in figure 5 for calculating
the critical stress of the sheet apply, strictly speaking,
only when the sheet is in pure shear. Actually, the
sheet is also subjected to bending stresses but, in
diagonal-tension beams designed for high structural
efficiency, the effect of the bending stresses on the
critical stress can probably always be neglected.
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This simplifying circumstance is due to the fact that
the critical stress is of little interest in itself and con-
sequently need not be very accurately lmown; it is
needed only to compute the diagonal-tension fraction k.

Special buckling tests made by a number of investi-
gators have shown that, with sheet of ordinary flatness
and test jigs of ordinary dimensions, the buckling of
sheet subjected to pure shear usually starts at 60 to
80 percent of the theoretical critical load. Very
careful tests have shown that buckling may be delayed
to loads of about 90 percent of the critical by using
very flat sheet and very heavy test jigs. The deflec-
tions are quite small at first, however, and sensitive
means of measuring must be employed to detect them.

On diagonal-tension beams, the buckling of the web
begins on the compression side of the beam and carries
across the neutral axis for some distance. Near the
tension flange, buckling is delayed by the stiffening
action of the tension.
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In the tests of the N. A. C. A. beams, no special in-
stl uments were used to detect the beginning of buckling
of the web. With ordinary visual inspection, the first
buckles were usually detected at about 150 percent of
the calculated critical load. By means ofastraight-edge
laid across the sheet, the first buckles could usually be
detected at about 120 percent of the critical load.

An indirect and therefore not very accurate check on
the buckling of the sheet was furnished by the strain
measurements on the uprights of the N. A. C. A. beams;
the first appearance of stresses in the uprights should
coincide with the first buckling of the sheet. Consider-
ing the weaknesses of this indirect method of checking,
the agreement indicated by the inspection of figures 12
and 17 is fair.

EXPERIMENTS ON THE BUCKLING OF THE UPIUGHTS

Tests of N. A. C. A. beams.—The main purpose of the

N. A. C. A. tests was to study the stress distribution in

incomplete diagonal-tension fields. Some exploratory

tests, however, were made on the problem of buckling

of the uprights. I?igure 21 shows the set-up of the 20-

inch beam. The bridge carrying the dial gages was
provided with knife edges resting in the corner between
web and flange. The dial gages gave the deflections of
the uprights at the upper and the lower quarter points
and at midheight. The set-up for the 10-inch beam
was similar.

The uprights used on the 10-inch beam were similar
to the uprights of type I but were only % inch thick.
I?igure 22 shows the measured deflections plotted
against the applied load. Three calculated critical
loads are indicated: PI is the critical load for general
elastic instability calculated by equation (17), sup-
ported edges being assumed; PZ is the critical load for
general instability calculated by equation (17) after
changing the coefficient 17.5 to 27.8, clamped edges
being assumed; P, is the critical load causing buckhng
of the sheet between uprights. In this particular case,
instability of the sheet and general instability of the
web begin at about the same load. The half-wave
length corresponding to PI is hl=8.2 inches; corre-
sponding to Pz, it is &=5.5 inches. The theory of
anisotropic buckling is therefore just barely applicable
because the spacing of the uprights is 5 inches. At
some stations, the experimental curves show deflections
beginning at very low loads and, in general, the experi=
mental curves are of such shape that a buckling load
cim.not be defined with any degree of certainty; it
seems justifiable to state, however, that the deflections
became noticeable in the neighborhood of the pre-
dicted critical loads.

Two sets of deflection measurements were taken on
the N. A. C. A. 20-inch beam. In both tests, uprights
of type I were used. In the fist test, the spacing
was 5 inches; in the second test, 10 inches. Figures
23 and 24 show the measured deflections. The half-

407300”41–—27

wave length for the first case is Xl= 10.5 inches; for the
second case, kl= 12.5 inches. The theory may there-
fore be considered applicable in the first case but not
in the second case. As on the 10-inch beam, the shape
of the curves is such that it is impossible to define
definitely any point on them as the buckling point,
but the deflections become appreciable in the neigh-
borhood of the calculated critical load.

The general shape of the observed deflection curves
coniirms the conclusion previously drawn that the
buckling of the uprights is not a pure stability problem
but a stress problem, because initial eccentricities and
interaction with web folds cause deflections to begin
practically as soon as load is applied. At the cal-
culated critical load S’.,, the deflections of the
N. A. C. A. beams are 0.06 to 0.11 percent of the length
of the uprights; the deflections vary roughly as the
square of the load.

Limpert’s tests,—Limpert (reference 19) tested four
diagonal-tension fields with closely spaced and very
flexible uprights (L/P from 340 to 550). The load was
not applied as beam load; a parallelogram was used to
load the specimens in pure shear. As a result of this
method of testing, it was easy to measure the angles of
shear strain, which Limpert gives as the main results of
his tests. As the criterion for buckling, he chose the
load at which the curve of shear strain against load
departs from the straight line.

A closer examination of the tests shows that the web
stresses were rather high, so that yielding of the web
material might have been not only a contributing cause
but possibly the main cause for the departure from a
straight line in the strain-load diagram. Very definite
conclusions in this respect cannot be drawn because the
physical properties of the web material (brass) are not
given.

Limpert states that large buckles occurred at half
the critical load calculated by him. Unfortunately,
he gives only a few sample curves of deflection for one
specimen, which are given for loads far beyond the
critical load for anisotropic buckling; consequently, no
check can be made at the critical load. On the assump-
tion, however, that the square law of the increase of
deflection holds, as noted on the N. A. C. A. beams, it
is possible to find by extrapolating backward that the
maximum deflections at the critical load for anisotropic
buckling were about 0.04 to 0.06 percent of the length
of tle upright, which is of the same order of magnitude
as the deflections on the N. A. C. A. beams.

The tests made by Limpert were used to obtain
experimental confirmation of the bracing effect that
the diagonal-tension web exerts on the uprights. The
stresses developed in the uprights of Limpert’s test
specimens were computed by the use of the design
chart given as figure 4; these stresses were multiplied
by the cross-sectional areas of the stiffeners to obtain
the loads carried in the stif?ieners. From the lengths of

*
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THE INCOMPLETELY DEVELOPED

the uprights and their moments of inertia, the Euler

stresses were then computed. The ratios of the

developed stresses to the Euler stresses were listed in

table II. The diagonal-tension fraction k was then
computed and listed in table II. Next, the values
1+ k2D were computed in accordance with the proposed

approximate method of estimating the buckling load in

incomplete diagonal-tension fields and were listed in the

table. The last column in the table gives the ratio of

developed strength to “predicted strength; the average

ratio for the four tests is very close to unity.

TENTATIVE CONCLUSIONS ON BUCKLING AND STRENGTH OF
UPRIGHTS

In addition to the experiments on buckling of up-

rights described in the preceding section, there are on

file at the N. A. C. A. a number of routine test reports

made by manufacturers and other agencies. Unfor-

tunately, most of these reports are entirely useless, as

far as correlation with theory is concerned, because

important data are lacking; for instance, the moment

of inertia of the uprights is usually omitted. Further-

more, the uprights were often overstrong and did not

fail. There are, consequently, very few useful experi-

mental data available. On the other hand, it was

pointed out in part I that the theory of failure of up-

rights is not very well developed, particularly with

reference to interaction between uprights and web.

The following conclusions based on these, routine tests

M well as on the tests discussed in this paper should

therefore be understood to be of a very tentative

character.

The theory of buckling of an orthotropic plate under

shear stress agrees reasonably well with the observed

facts. Onset of this type of general elastic instability

is, however, not a very obvious phenomenon, because

the diagonal-tension folds in the web tend to cause the

premature appearance of slight buckles and because

initial buckles may exist. Experiments with corru-

gated sheet (reference 16) have shown very good agree-

ment with the theoretical buckling loads.

If the uprights are sufficiently flexible to withstand

large deformations, the load causing general elastic

instability of the stiffened web can be safely exceeded.

In Limpert’s tests, the critical load was exceeded 2 to 6

times.

The stabilizing effect that a web in incomplete diag-

onal tension exerts on the bending failure of, uprights

can be estimated by using a fraction of the theoretical

stabilizing effect of the pure diagonal-tension field

proportional to the square of the diagonal-tension frac-

tion k, as indicated by equation (20).

If the uprights have thin walls or legs subjected to

local buckling failure, the stresses at which failure

occurs are about equal to the stresses that would cause

crippling if the uprights were tested as free columns,

provided that the leg attached to the -web is at least as

thick as the web and the ratio AU/tdis not less than 0.3.
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If the ratio A#d is less than 0.3, the sheet may take
charge and force failures in the uprights. Under these
conditions, there is probably little relation between
the failing stresses of the uprights and the failing stresses
of the corresponding free columns; tests appeax to indi-
cate that the failing stress of the upright may be less
than half the failing stress of the free column.

The only theoretical design criterion for such cases
is formula (17) for general elastic instability. If the
upright spacing is within the usual limits (d> h/2) and
the uprights are of sufhciently compact cross section to
eliminate local buckling, a small ratio AU/td will neces-
sarily indicate slender uprights. Under such conditions,
the ultimate load for the few pertinent tests ranges be-
tween 1.7 and 2.5 times the critical buckling load given
by formula (17). Only on corrugated sheet was the
ratio found to drop as low as 1.2 (reference 16). It
therefore seems safe to design webs having the ratio
AU/td below 0.3 so that the general elastic instability
begins at the design yield load, which by definition is
two-thirds of the design ultimate load, but there is no
theoretical method of finding quantitatively the margin
against ultimate failure.

STRESSBS IN THE WEB

In an incomplete diagonal-tension field, the stress

in the median plane of the web is a biaxial or a com-

bined stress. Superposed on this stress are bending

stresses caused by the formation of the folds. The

direct determination of the stresses by means of strain

measurements is hampered by practical obstacles that

thus far have deterred investigators from making any

measurements of this kind. Strain measurements can

be quite easiIy made in a direction parallel to the folds,

but this process is insuiiicient to determine all the

components of the combined stresses. Measurements

in directions not parallel to the folds are very difticult

to make and to evaluate; they would require gages with

a very small gage length or auxiliary measurements of

sheet curvature.

.b the N. A. C. A. tests, no attempt was made to

measure strains in the sheet. The only measurements

available are those given in reference 5 based on slope

measurements on the sheet. According to these

measurements, the stress ffi,j in the median plane of

the sheet is practically equal to 27 even for a loading

ratio of less than 2. This stress c,. is an equivalent

uniaxial or simple stress entailing the same danger of

rupturing the sheet as the actual combined stress,

assuming that the danger of rupture is measured by

the amount of strain energy stored in an element of

unit volume.

The maximum web stresses occur in the outer fibers

of the sheet on the crests of the waves. In the tests
reported in reference 5, these stresses were found to
be 1.5 to 1.7 times the average web stresses for the
loading ratios considered in this paper (below 40) and
for practical values of Vu/.. These stresses occurred
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midway between uprights. At loading ratios higher
than 40, the maximum stresses were found near the
edge of the sheet, where the folds are forced back into
a plane by the edge members (cap strips). OnIy a
few scattered test points are available and indicate
stresses as high as 2.2 times the average web stress.

It might be mentioned that, in the tests of reference
5, the flanges were so stiff that the flexibility parameter
ud was practically zero and the factor Cz of equation
(3) was equal to unity.

III. STRESS ANALYSIS OF DIAGONAL-TENSION BEAMS

RANGE OF APPLICABILITY

The empirical coefficients of the proposed method of
analysis were obtained by tests of beams having values
of h/t from 500 to 1,000. The method maybe expected
to give good approximations for values of h/t beyond
1,000; as the wdue of h/t decreases, the method becomes
increasingly conservative.

General test experience indicates a large scatter of
test results at lo@ig ratios ~/r., below 3 or 4; the
diagonal-tension effects consequently cannot be very
closely calculated in this range.

All the test data on which the proposed method of
analysis rests were obtained on beams with upright
spacings d= L Consequently, the method should not
be used for beams with d>h.

ANALYSIS OF THE FLANGES

The flanges are subjected to three distinct sets of
stresses: the primary beam stresses computed by the
standard beam formula or truss formula, the compres-
sion stresses u~that balance. the horizontal component of
the diagonal tension in the web, and the stresses caused
by the secondary bending moments.

The stresses up are computed with the help of
formula (14).

The secondary bending moments are computed with
the help of equation (21). These moments should be
assumed to be of equal magnitude but of opposite sign
at stations between uprights and at stations at uprights.
Unless more extensive experimental data than given in
this paper are obtained, the theoretical curve of figure 2
should be used for Cl and the moments on the tension
flange should be taken to be as large as the moments on
the compression flange. It can probably be assumed
that secondary bending moments computed in this
manner are always conservative.

The secondary bending stresses fJSB in the flanges are
obtained by dividing the secondary moments by the
section moduli of the individual flanges. The section
moduli should be computed assuming the material
effective in bending to be the cross-hatched area Ar
shown in figure 3. An allowance should be made for
rivet holes; no allowance should be m~de for gusset
effect, because this effect is already taken into account
by the method of computing the moments.

ANALYSIS OF THE WEB

According to the measurements of reference 5, the
maximum stresses in the outside fibers of the web are
about 1.5 to 1.7 times the stresses in the median plane
of the web for loading ratios below 40. The first indi-
cations of yielding and permanent set may therefore
be expected when the stress in the median plane of the
web r=2r/Cz is between 1/1.7 and 1/1.5 VV.P.or be-
tween 0.59 and 0.67 a..... Although the implied use
of the particular equivalent stress gjd of reference 7 is
open to debate, possible changes in equivalent stress
wilI be of little importance compared with the practical
difficulty of dete rminiug in a builtiup structure the
load at which yielding and set first appear. For loading
ratios above 40, reference 5 indicates that the maximum
stresses are about 2.2 times the stresses in the meclian
plane and yielding may therefore be e~pected when
u= 1/2.2 UV.P.=0.45 CU.P.. These values agree quite
well with general test experience, which indicates that
slight set may be expected at about 0.5 UV.P.and defi-
oite set at 0.7 13U.V.. Reference 3 gives the somewhat
higher value 0.8 LTV.D.; this di.ilerence maybe caused by
using panels with low values of h/t having considerable

gusset effect or by allowing larger permanent deflec-

tions. As the permanent set of shear webs is frequently

determined by visual inspection rather than by quanti-

tative measurements, it is indeed surprising that dif-

ferent investigators agree so closely.
The high stresses just discussed are localized in the

mtside fibers of the sheet along the crests of the waves.
When the stresses pass the yield point, ample oppor-
tunity is present for redistribution and equalization of
stress; Wagner argued in reference 1 that this localized
gielding would merely serve to hasten the attainment
~f a uniform diagonal-tension field. The ultimate
strength of the web would then be reached when the
stress in the median plane of the web u= 2r/C; equals
the ultimate allowable stress in tension.

According to the results of reference 7, this method
of finding the ultimate strength of the web would apply
wen for a loading ratio below 2, that is, when the sheet
has barely buckled. Consideratiori of the limiting case
When the loading ratio is just above unity indicates
that this method is probably too severe. If such u
sheet is considered as a shear-resistant web, its strength
d be found by comparing the shear stress ~ with the
ultimate shear stress 7UZ,. If the same sheet is con-
sidered as an incomplete diagonal-tension field, its

.
strength w-all be found by comparmg u= 2r vnth utiI~,
I’he value of UUUbeing less than 2TW, the secoxid

method of design would impose a weight penalty on

the designer. Such a penalty seems unjustified be-

~ause test experience indicates that the bu&ling of a

hat sheet is a fairly gradual process so that no sudden

shange in design characteristics seems to be called for

Bt the buckling point. It is therefore suggested that
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the diagonal-tension stress be computed as v= WC,
in all cases and that the allowable ultimate stress be

taken as

uall=2ruz~—k(2rull—uuZt) (22)

where k is the diagonal-tension fraction. When the

web is in pure diagonal tension (k= 1), then aall=
crul,. When the web is in pure shear (k= O), then
u=11=2ru11,or r~ll=rUl~.

Allowance must be made for the weakening of the
web by the rivet holes along the flanges and the un-
rights. This allowance may be made by multiplying
the sheet thickness by the factor (1 –ml), where d
is the diameter of a rivet and n is the number of rivets
(in one row) per inch run along the flange or the upright.
This correction is important because the rivet spacing
along the flanges is often quite close.

A point that may cause some confusion should be
mentioned here. It is fairly common engineering prac-
tice to test a series of diagonal-tension beams and to
plot the results as allowable shear stresses. In most
cases, the allowable shear stresses thus determined will
not agree with those found by using formula (22). The
test failures, however, are usually failures of the up-
rights; rupture of the web is comparatively rare. The

test results should therefore be considered as giving not
failing stresses of the webs but failing loads of the
beams. These failing loads depend on all the proper-
ties of the beams; to plot them as a function of a single
property is defensible merely as a measure of conven-
ience and permissible only with the strict understanding
thrh the results shall be applied exclusively to closely
similar beams, unless there is definite evidence that the
neglected properties play only an insignificant part.
Unfortunately, the iinal curves of a test report com-
monly become separated from the report itself, making
impossible the application of the results in the proper
manner, namely, to beams similar to those originally
tested.

ANALYSIS OF UPRIGHTS

Computation of stresses in the uprights.—The maxi-
mum stresses in uprights symmetrically arranged on
both sides of the web occur at midheight and can be
found by using either equation (13) or the design chart
of figure 4. For values of h/tbelow- 600, the computed
stresses must be multiplied by a reduction factor k~
taken from figure 14 with y/t=h/2t.

When the value of h/t is about 1,000 or higher, the
computed stresses au maybe considered as group-average
stresses for groups of three or more uprights working
under identical conditions. Any individual upright of
the group may have stresses 20 to 30 percent higher
than the group average.

As the value of h/t decreases, the computed stresses
LTVbecome more conservative. At h/t= 500 this con-
servatism is just about
from the group average,

sufhcient to offset variations
so that the computed stresses

nay be considered as maximum rather than as group-
Lverage stresses.

When the uprights are arranged on only one side of
;he web, the actual cross-sectional area of the uprights
;hould be replaced by an effective area because the
lprights will be not only in compression but also in
~ccentric bending, and the stress of the fibers adj scent
h the web will be the sum of the compressive stress and
\hebending stress. By use of the elementary formulas
~orbending due to eccentric loading, the effective area
)f the uprights is found to be

(23)

where A is the actual area; e, the distance from the
web to the centroid of the upright; and p, the centroidal
radius of gyration of the upright for bending normal to
the plane of the web. When this area A, is used, the
stress au found from figure 4 will be the maximum stress
in the upright and will occur in the fibers next to the
web.

Allowance should be made for unintentional eccen-
tricities that may exist even when the uprights are
symmetrically arranged in pairs with respect to the
web. In the N. A. C. A. tests, the eccentricities cal-
culated from the individual strain readings sometimes
reached the theoretical maximum, which is found by
~suming that the bolt transferring the load from
flange to upright bears only on one side of the web,
that is, on one upright of the pair. In riveted connec-
tions, the average eccentricity will probably be smaller.

Determination of buckling stresses for uprights,—
l?he available theory for determining allowable stresses
tir buckling stresses in uprights was discussed in part L
I!he main contribution of the theory is the establishment
of an effective column length for bending failure. The
mtual column strength for any chosen section will
probably quite often be determined by tests rather than
by theoretical calculations. If these tests are made on
uprights as free columns, careful consideration must be
given to the possible effects of interaction between the
uprights and the web.

The task of defining allowable stresses for uprights
is extremely diflicult. Aside from the fact that the
theory is very incomplete, there ako exists no un-
equivocal, generally accepted definition of the term
“failure.” Since the basic purpose of setting allowable
stresses is the avoidance of failure, this lack of a defini-
tion is a severe handicap. Columns exhibit generally
elastic instability of one type or another, and the onset
of instability is termed “failure” in the theoretical
text-books. The practical test engineer may observe
this phenomenon but considered it merely as “slight
waving”; in fkct, in routine tests the phenomenon may
go undetected because sensitive measurements may be
necessary to discover it. From a practical point of
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view, it is not so important to know the exact buckling
load as it is to know how soon after passing the buckling
load the deformations and the stresses become intoler-
ably large. Unfortunately, this range is generally
beyond the scope of the theory for complex structures.

The different meanings attributed to the word
“failure” have created much confusion and uncertainty.
Itmay be advisable to di.tlerentiate between impermis-

sible failures, conditionally permissible failures, and
permissible failures. Impermissible failures are, for
instance, rupture of the web or shearing of the rivets
between uprights and flanges. The best example of a
permissible failure is a diagonal-tension web; such a
web has failed by elastic instability under shear stresses.

Reference should be made to the tentative conclusions
on strength of uprights in part II of this paper.

ANALYSIS OF EIVET CONNECTIONS

Rivets between web and flange,-If the web is
-working in shear, the running shear transmitted from
the web to the flange is q=SW/h pounds per runnin ginch.
The force on each rivet is obtained by multiplying the
r&g shear by the rivet pitch. If the web is in
pure diagonsd tension, the force transmitted is 1.414
SW/hpounds per running irich, assuming the angle of
diagonal tension to be 45°.

In an incomplete diagonal-tension field, the force
transmitted between web and flange may be assumed to
be between the two extremes given and proportional to
the amount of diagonal tension, that is, equal to
(1+0.414 k) SW/h, where k is the diagonal-tension
fraction. This procedure is probably conservative
when the web is clamped between two parts of the flange
or when the web is stMened by tensile stresses; under
these conditions, the -web in the vicinity of the rivets
will be practically in pure shear. When the web is
riveted to only one side of the flange, a similar effect.
will appear because the web is forced to remain more
or less plane where it is in contact with the flange;
on the other hand, the tendency of the web to form
folds will put tensile forces on the rivets, so that
greater margins of safety should be provided in such
cases.

web splices.-The design of web splices is, in
principle, identical with the design of the joint between
web and flange.

Rivets between uprights and web.—Theoretically,
the uprights need not be riveted to the web; in two sets
of the N. A. C. A. tests, the uprights were entirely free
of the web. In practice, the uprights are probably
always riveted to the web in order to take advantage of
the bracing effect that the -web exerts on the uprights.
The strength of the uprights and the strength of the
rivet connection are interdependent: one cazinot be
found unless the other is known. Obviously, then,
any calculations would require the existence of a well-

developed theory of the interaction between uprights
and web. The discussion in part I showed the theory
of interaction to be practically nonexistent; it is there-
fore impossible at present to design the rivet connection
between uprights and web on a very rational basis.
The only possible approach to the problem by theoreti-
cal means is to use the standard theory for shear in
builtiup structural columns; this theory may be found
in many textbooks on structural engineering or strength
of structures, for instance, in reference 12.

A minor criterion for a desirable rivet spacing can be
established as follows for the case where the uprights
are arranged on only one side of the web. In general,
delaying the appearance of folds as long as possible
will be desirable. To this end, the rivets attaching the
uprights to the web should be spaced closely enough
to give to the web the equivalent of a supported edge
along the line of rivets. Test experience indicates
that, in most cases, one diagonal-tension fold forms at
each upright; that is, the wave length of the buckles is
equal to the spacing of the uprights. In order to pre-
vent this buckling at each upright, the rivet pitch should
be less than or at most equal to one-fourth the wave
length of the folds or the upright spacing, that is

If the rivet pitch is increased to equal the wave length
or spacing, the folds can theoretically form across the
uprights as though the uprights did not exist; the width
of plate to be used in formula (16) for the critical shear
stress will then be the depth of the beam instmd of
the spacing of the uprights and the critical shear
stress will be very much reduced. Obviously, the ful-
fillment of this criterion for rivet pitch will be neither
feasible nor necessary on shallow beams.

Rivets connecting uprights and flanges,-The end
rivet or rivets connecting the uprights to the flanges
carry the loads from the uprights into the flanges.
These loads are obtained by finding the stresses in the
uprights with the aid of figure 4 and multiplying the
stresses by the areas of the uprights. The stresses in
the uprights vary along the uprights in accordance with
the gusset factor shown in figure 14; in order to find
the load on the end rivets, the stress in the upright
should be taken at the upright-to-web rivet nearest the
flange.

An individual upright can evade general over-
stressing to some extent by buckling and throwing the
load on the adjacent uprights. The end rivets cannot
evade overetressing with any degree of effactiveness;
they should therefore be considered the same as
6ttings, and the loads transmitted by the uprights
should be multiplied by a factor of at least 1.2 to obtain
the design loads on the rivets when the computed
stresses in the uprights are group averages.
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SHEAIt STIFFNESS

In diagonal-tension beams, the shear deflections are
of appreciable magnitude compared -with the bending
deflections and cannot be ignored, as in most other
types of beam. A knowledge of the shear stiffness of
diagonal-tension fields is, therefore, of some practical
interest.

According to the basic assumption expressed by
equation (7), there is a simultaneous action of shear
force and diagonal-tension force. The total shear
deformation is the sum of the deformations caused by
these forces; the equivalent or effective shear modulus
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FIOUIIE25.-Effcotivo shcmrmoduius (secant moduius) of incomplete diagonal-
tensionfield.

G, of the incomplete diagonal-tension field is therefore

given by the equation

(24)

where G is the shear modulus of the material of the

sheet and GD2. is the effective shear modulus of the web

when the web is working in pure diagonal tension.

According to reference 1, the efiective shear modulus

in pure diagonal tension is

‘“’=%(’-%:)(25)

In most practical cases, u= can be neglected in this
expression because the flanges must be made heavy
to carry the primary beam stresses. For — UV, the
value uu is substituted because, in this paper, uu is
understood to be a compression stress. fially, by

equation (3), a= 27, assuming that C2 can be taken as
unity, and the for.umla for shear modulus becomes

EG~T= _

41/1 +g

With the average value E=2.5G, this equation be-
comes

0.625G
GDP= —

4
1+%

(26)

With the help of equations (24) and (26) and the
design chart of figure 4, curves of the ratio Ge/G have
been computed for four values of Ai#d and for the same
range of loading ratios rlrc, as used in figure 4. These
curves are plotted in figure 25. The shear stiffnesses
given by these curves are somewhat lower than the
corresponding values from reference 5; in the practical
range of Au/td, the difference is about 10 percent and
varies but little with loading ratio up to loading ratios
of 50. For the limiting cases of pure diagonal tension,
the stiffnesses given by figure 25 agree with those of
reference 5 within the accuracy of reading the curves.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY l?IELD, VA., A4cwch 28, 1940.
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TABLE I

SCHEDULE OF N. A. C. A. STRAIN MEASUREMENTS
, I

Spochrgof uprlgMs
Type of upright Web

~=b~.l~=lofn.l~=zo~.
I I I I

Tests on 2Ufnchbeam

1--------------------------------- CIsmped---------- 20-1 po-z 2Q-3
n--. -.------.. -.--. -.:----------- .-...do ------------ . . . . ..-. 20-6
Type I andIIalternnturg------ ----.do ------------ -------- 20-0

Do----------------------- .---.do ------------ -------- a20-7
. . . . . ..-
. . . . . . . .

I Testson lC-inchbeam I
1--------------------------------- Clamped---------- -------- 10-1
n-------------------------------- . . ..-do ------------ 10-2 10-2

. . . . . . . .

I--------------------------------- Free-------------- 10-4
. . . . . . . .

10-s . . . . . . . .
n-------------------------------- -..-. do. -- . . . . . . . . . 10-0 10-7 .-.- . . . .

.For set-up20-7,positions of type I and type II uprightswerelntorclmngodm
wmpsred with positionson set-up20-6.

TABLE II

[. –1BssIcdatafromreference19;d/h=O.2;VTIPB=&Rp~ - ‘~?l

1 I

EFFECT OF DIAGONAL TENSION ON BUCKLING Or
UPRIGHTS

Sp2cfmerr
no

UU/UE k l+k*D ux(I+k2D)

L----------- 7.61 0.022 6.S5 1.ao
2------------ 4.65 .572 3.34 .S7
3-----------------3.50 .670 3.60 L 01
4---------------- 3.13 .720 3.90 .70

Aversge--- ------------ ------------ . . . . . . . . . . . . .00


